
Florida AFS 2023 Open Science Workshop

2023-05-10

Table of contents

Course synopsis 5
Prepare . 6
Agenda . 6
Instructor . 7

I Modules 8

1 Open science basics 9
1.1 Goals and motivation . 9
1.2 Why open science? . 9
1.3 Learning and speaking the language of open science 12
1.4 Schools of thought . 13

2 Open science for collaboration 15
2.1 Goals and motivation . 15
2.2 Essential elements of collaboration . 15

2.2.1 Workflow management . 15
2.2.2 Version control . 17
2.2.3 Git and GitHub . 19

3 Open science for impactful products 23
3.1 Goals and motivation . 23
3.2 Quarto . 23

3.2.1 Code chunk options . 28
3.2.2 Figures and tables . 30
3.2.3 Output options . 34
3.2.4 Citations and References . 38
3.2.5 Publishing . 43

3.3 Summary . 44

II Extra modules 45

4 Principles of tidy data 46

2

5 Addressing implementation barriers 52
5.1 Goals and motivation . 52
5.2 Learning curves . 52
5.3 Fear of exposure . 53
5.4 What does it mean to be open? . 55
5.5 Something is better than nothing . 56

6 Additional tools for collaboration 58
6.1 Slack . 58
6.2 Trello . 59
6.3 Google Drive . 59
6.4 Office 365 . 60
6.5 GitHub . 60

Appendices 62

A Setup for the workshop 62
A.1 Install R and RStudio . 62

A.1.1 Windows: Download and install R . 62
A.1.2 Windows: Download and install RStudio 66
A.1.3 macOS: Download and install R . 67
A.1.4 macOS: Download and install RStudio 67
A.1.5 Check Install . 67

A.2 Install Quarto . 68
A.3 Create GitHub account . 69
A.4 Install Git (optional) . 69

A.4.1 Make sure RStudio can talk to GitHub via Git 70
A.5 This is hard! . 70

B Introduction to R 73
B.1 RStudio . 73

B.1.1 Open R and RStudio . 73
B.1.2 Scripting . 74
B.1.3 Executing code in RStudio . 74

B.2 R language fundamentals . 75
B.2.1 What is the environment? . 77

B.3 Packages . 77
B.3.1 CRAN . 77
B.3.2 Installing packages . 77

B.4 Data structures in R . 78
B.4.1 Vectors (one-dimensional data) . 78
B.4.2 Data frames (two-dimensional data) . 78

3

B.5 Getting your data into R . 79
B.6 Summary . 80

C Resources 81
C.1 Open Science Websites . 81
C.2 Data Management Tools . 81
C.3 TBEP R Trainings . 81
C.4 R Lessons & Tutorials . 82
C.5 R eBooks/Courses . 82
C.6 Git/Github . 82

D Contributor Covenant Code of Conduct 83
D.1 Our Pledge . 83
D.2 Our Standards . 83
D.3 Enforcement Responsibilities . 84
D.4 Scope . 84
D.5 Enforcement . 84
D.6 Enforcement Guidelines . 84

D.6.1 1. Correction . 84
D.6.2 2. Warning . 85
D.6.3 3. Temporary Ban . 85
D.6.4 4. Permanent Ban . 85

D.7 Attribution . 85

References 86

4

Course synopsis

Welcome to the 2023 Florida AFS open science workshop! Open science (OS) has been ad-
vocated as an effective approach to create reproducible, transparent, and actionable research
products. However, widespread adoption among the research and management community
has not occurred despite its perceived benefits. In the face of major environmental challenges,
the collaborative framework provided by OS is needed now more than ever. This workshop
will cover material introducing participants to core concepts of OS. The target audience in-
cludes anyone interested in applying OS in their own workflows as part of a larger research
and resource management team.

By the end of this workshop, you should have a good understanding of fundamental concepts
in open science and how they can be applied to help bridge the research-management divide.

5

You will also have the skills to understand how collaborative open science tools can be used to
increase efficiency and transparency, understand fundamental best practices for working with
data to facilitate openness, and create reproducible Quarto documents.

Much of the content on this web page was adopted from the TBEP Data Management SOP.

Prepare

Please attend the workshop with a personal laptop and power supply. Make sure your laptop
can access publicly available WiFi. You need to install software prior to the workshop,
visit the setup page for full instructions. We will have limited capacity to help with
installation issues the day of the workshop, so please come prepared. The setup instructions
will guide you through the following.

1. Install R: link
2. Install RStudio: link
3. Install Quarto: link
4. GitHub create account: link
5. Install Git (optional): link

We also assume some knowledge about R. Please visit this page for a crash course if you
need to brush up on your R skills.

Agenda

1. The basics of open science: 12:30 - 1:00
2. Open science for collaboration: 1:00 - 2:00
3. Open science for impactful products: 2:15pm - 3:30pm

Each module uses a set of common icons to orient you to specific tasks or experiences during
this workshop. These include the following:

Exercise and discussion

Watch and learn

Description of a collaborative tool

Pros of a collaborative tool or solution to an open science challenge

Cons of a collaborative tool

Challenge to overcome for open science

6

https://tbep-tech.github.io/data-management-sop/
https://cran.r-project.org/bin/windows/base/
https://posit.co/download/rstudio-desktop/
https://quarto.org/docs/get-started/
https://github.com
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Instructor

Dr. Marcus Beck is the Program Scientist for the Tampa Bay Estuary Program and is devel-
oping data analysis and visualization methods for Bay health indicators. He received his PhD
in Conservation Biology from the University of Minnesota in 2013. Marcus has experience
researching environmental indicators and developing open science products to support envi-
ronmental decision-making. Marcus is also an open source software and dashboard developer
to facilitate science application. CV, Google Scholar, GitHub

This website is licensed under a Creative Commons Attribution 4.0 International License.

This version of the website was built automatically with GitHub Actions on 2023-05-10.

7

mailto:mbeck@tbep.org
https://github.com/fawda123/CV/raw/master/Beck_CV.pdf
https://scholar.google.com/citations?hl=en&authuser=2&user=9ZDDQ_8AAAAJ
https://github.com/fawda123
https://github.com/tbep-tech/flafs-os-workshop/actions

Part I

Modules

8

1 Open science basics

1.1 Goals and motivation

This is the first module in our workshop on open science. This module describes the need for
open science, how it can improve research applications, and exposes you to common ideas and
terminology that we’ll be using throughout the day. Consider this your 30,000 foot view of
open science. Our later modules will provide more detail on specific topics in open science
that you can use for continued learning.

• Goal: get comfortable with key ideas and concepts for understanding open science
• Motivation: this is the first step in your open science journey!

1.2 Why open science?

Let’s start with revisiting the scientific process. I’m sure this looks familiar to all of you. This
is geared towards an applied research question.

Our basic scientific approach to discovery is motivated by a question or research goal, devel-
oping a hypothesis for the question, collecting data based on the hypothesis, developing a tool
that can be used for decision-making, and summarizing the results in a conventional format.

Many scientists, especially early career researchers (my past self included), may assume that
this is sufficient to affect change. We write the report, send it out into the world, and move
on to the next project. This is a common mentality:

“This 500-page report will answer all of their questions!”

From the other side, such as the manager or policy-maker, the report may be received like
this:

“This 500-page report answers none of my questions!”

9

It’s dense, inaccessible, and there are probably questions about the underlying data and meth-
ods used to achieve the results. More importantly, it doesn’t present the information in an
easily digestible format to quickly make the right decision. Sometimes, if you think you’re
doing applied science, it may just be implied science that falls short of application.

Why is this conventional approach to science ineffective at seeding change?

The environmental management community is often siloed with each branch doing their own
thing and speaking their own language. Between the research (typically academic) and man-
agement community, we call this the research-management divide.

A distinct gap exists between how scientific products are developed and how they can be used
to meet management needs. This is often the result of communication barriers, irreproducible
results, information loss with poor documentation, inaccessible data, and opaque workflows
known only to the analyst.

These barriers can occur at any stage of the research process. This compelling graphic from
Michener et al. (1997) describes the atrophy of information in a closed approach to creating
science.

10

The last part is especially morbid. Sometimes, this is called the bus factor. What would
happen to your important work and life achievements if you were hit by a bus? Would others
be able to pick it up? Research products with a high bus factor are at risk of being lost if
critical team members are no longer available. This is a very real problem for continuity of
science.

11

https://en.wikipedia.org/wiki/Bus_factor

So how do we make changes to our workflows to ensure we can achieve truly applied science
using open tools and philosophies?

1.3 Learning and speaking the language of open science

The tools and broader philosophy behind open science can help us bridge the research-
management divide. It involves a fundamental shift in how we approach the scientific process,
both for your own internal workflows and how you can engage others in the process. By
others, we mean not just researchers, but specifically those that need the information to make
informed decisions. This also includes your future self.

Now, let’s settle on a definition for open science (from Open Knowledge International, http:
//opendefinition.org/, https://creativecommons.org/):

“The practice of science in such a way that others can collaborate and contribute,
where research data, lab notes and other research processes are freely available,
under terms that enable reuse, redistribution and reproduction of the research and
its underlying data and methods.”

Key words from this definition are italicized. There are very specific tools in the open science
toolbox that enable each of these key words. We’ll cover some of these later.

12

http://opendefinition.org/
http://opendefinition.org/
https://creativecommons.org/

Similarly, the current administration has declared 2023 the Year of Open Science. Their
definition is:

“The principle and practice of making research products and processes available
to all, while respecting diverse cultures, maintaining security and privacy, and
fostering collaborations, reproducibility, and equity.”

We can can breakdown these definitions into key principles.

1. Open data

• Public availability of data
• Reusability and transparent workflows
• Data provenance and metadata

2. Open process

• Iterative methods using reproducible workflows
• Collaboration with colleagues using web-based tools
• Leveraging external, open-source applications

3. Open products

• Interactive web products for communication
• Dynamic documents with source code
• Integration with external networks for discoverability

You’ll notice that web-based tools and open science are often discussed at the same time.
Science existed before the internet. Open science often focuses on how the two can leverage
and support one another despite the latter being a relatively new addition to society.

Advocates of open science also use the FAIR principles (Wilkinson et al. 2016) as guidelines.
The FAIR acronym stands for Findable, Accessible, Interoperable, and Reusable. Anybody
should be able to find your science, access it once it’s found, use it in different environments,
and reproduce it for additional analysis.

1.4 Schools of thought

Finally, it’s useful to make a distinction of how different people may talk about open science.
This can help you better navigate conversations to become an advocate for open science.

A useful paradigm is provided by Fecher and Friesike (2014) that describes open science as
five distinct schools of thought:

13

https://open.science.gov/

These are of course only conceptual boxes and there’s considerable overlap when open science
is used in practice. For our purposes, we’ll mostly be talking about ideas and tools from the
pragmatic, infrastructure, and democratic schools of thought. The end goal is to provide you
with the means to create more efficient and impactful science that can more readily be used
by others in a collaborative setting.

14

2 Open science for collaboration

2.1 Goals and motivation

This is the second module in our workshop on open science. This module will explore some
open science tools to help you and your team become better collaborators and to better engage
your science with external partners. We’ll introduce some essential elements of collaboration
and discuss some readily available tools for doing so.

• Goal: understand methods of collaboration and the pros/cons of various tools
• Motivation: start building the tools for your open science toolbox

2.2 Essential elements of collaboration

We start our deep dive into open science by focusing on collaboration as a fundamental activity
that can be enhanced through transparent, efficient, and reproducible tools. Having effective
tools to work together is a critical theme of many open science practices.

2.2.1 Workflow management

How do you organize your work each day? How do you make sure projects are on schedule
and pressing deadlines are met? How do you plan for short-term and long-term goals? Do you
have a five-year, ten-year, or longer career plan?

Work to achieve goals cannot be accomplished without a systematic approach to organizing
tasks. Chances are, we each have our own system that works for us that was probably developed
through trial and error. Although everyone has familiar workflows, they are often idiosyncratic
and deeply entrenched by habit. These comfortable workflows can be in direct conflict with
collaboration when we try to mesh them with the habits of others.

Does this look familiar?

Although the above comic from xkcd speaks directly to file management, it hints at a broader
problem of personal information management that can seriously complicate working with oth-
ers. I’m sure we’ve all struggled to find that one file for that one project from a vague
recollection of seeing it a few months ago.

15

https://xkcd.com/

16

Collaborative work can be facilitated through workflow management that helps you break out
of old habits. We’ll introduce some specific internet-based tools below to facilitate workflows
either for yourself or, better yet, working with others. These can help propel you towards open
science.

2.2.2 Version control

A specific problem for workflow management that can be solved by open science tools is file
management. Workflows can be immensely enhanced by tools that use strict guidelines for
tracking changes and allowing a complete view of the evolution of a project. This is where
version control comes in.

I’m sure many of you have fallen into this trap:

17

Version control is a way to track the development history of a project. It serves the joint
purposes of:

1. Formally documenting the changes that have been made to code, software, or text
2. Making sure that the development history is permanent
3. Providing a system for collaborating across platforms (with friends!)

It’s more than saving files. Documenting changes with a set of commands that follow strict
rules provides a transparent record for yourself and others, and establishing permanency en-
sures that any of the changes that are made can be vetted and accessed as needed. Think of
it as an insurance plan for your project.

If you’ve ever used Google Docs, you might have noticed a feature that looks a lot like version
control. The Google Drive platform is a great way to start working together and to familiarize
yourself with the basics of version control.

For any Google Doc, clicking on the link shown by the arrow will open the Version history
pane which shows all of the edits that were made to the document. You can view any of the
edits, who made the edits, view the changes (before/after) in the document, or even restore
the document to a previous version.

These are the building blocks of version control:

18

https://docs.google.com/presentation/d/1M6EfHmZZ6nQvkvZzPHOkSOwj3PpNcd0u291LMMFFOiE/edit?usp=sharing

1. No iterative and ambiguous file naming
2. History of changes assigned to each editor
3. Ability to restore a previous version

Perhaps more importantly, these tools are in the cloud and openly accessible (unlike other
cloud-based services). File links (via a URL) also do not change if a file is moved to a
different location in the drive. Overall, the Google platform is an accessible means of improving
collaboration (but not without cons).

2.2.3 Git and GitHub

Although Google products can get you a long way towards better collaboration, they do not
use dedicated version control software. These tools become more important as your projects
become more complex - those beyond simple documents or spreadsheets.

The most widely used software for version control is Git. Although we do not cover the specifics
of this software, it’s useful to understand the purpose and what it can do in making your work
more open and impactful. Git is integrated with many popular open source development
platforms, such as RStudio.

Many people often confuse Git with GitHub. GitHub is an online platform for working col-
laboratively through Git AND it allows you to be open with your work. We’ll provide some
examples below of how this can be done. Importantly, you do not need to be an expert in Git
to be able to use GitHub. This speaks volumes for how team efficiency can be improved with
GitHub through better collaboration.

This blog provides a helpful introduction to Git/GitHub for the casual user.

A common workflow for using Git and GitHub is shown below. One developer creates the core
content on their own computer and uses GitHub to host the repository online. From there,
collaborators can contribute to the repository through their web browser. A web page hosted
on GitHub can create a public-friendly format for others to view important content.

Watch and learn

19

https://tbep-tech.github.io/tbep-os-workshop/collaborate.html#cons-2
https://git-scm.com/
https://support.posit.co/hc/en-us/articles/200532077-Version-Control-with-Git-and-SVN
https://www.github.com
https://masalmon.eu/2023/01/12/git-github-casual/

Figure 2.1: Octocat, the strange and loveable mascot of GitHub.

Workflow management in the real world - using GitHub to collaborate. Here we present some
examples from the Tampa Bay Estuary Program State of the Bay report and water quality
report card.

Watch and learn

Now we’ll demonstrate how to setup a version control project with RStudio, Git, and GitHub.
This example will cover:

1. Creating the project in GitHub
2. Creating a file, adding content, and committing it to the project
3. Setting up issues in GitHub
4. Adding members to the project
5. Creating a Kanban project board to assign tasks

Exercise and discussion

In small groups, setup a shared workspace using GitHub and create a project management
board. Some real world examples of why you might do this were presented in the earlier watch
and learn.

20

https://tbep.org/estuary/state-of-the-bay/
https://tbep.org/water-quality-report-card/
https://tbep.org/water-quality-report-card/
https://tbep-tech.github.io/flafs-os-workshop/collaborate.html#watch-and-learn
https://tbep-tech.github.io/flafs-os-workshop/collaborate.html#watch-and-learn

Figure 2.2: A GitHub workflow engaging collaborators.

21

1. Open GitHub in a web browser and have one person create a new repository (the big,
green “New” button in Repositories). Add each member to the repository after it’s
created (hint: Settings -> Collaborators)

2. Have that same person create a project board for the repository (Hint: Projects -> New
project -> board format)

3. After each person accepts the invitation to the repository (check your email!), each new
member create a new file in the repository (Hint: Click “Add file” near the top). Name
it something unique, save and commit the changes

4. Assign issues to different members of the repository to do something to the new files
(Hint: on the right menu, select “Assignees”). Add the issue to the project board (Hint:
on the right menu, select “Projects” and click the new project).

5. Work on the issues until the time is up. Close each issue as they’re completed.

22

https://www.github.com

3 Open science for impactful products

3.1 Goals and motivation

This is the third module in our workshop on open science. Now we focus on how Quarto can
be used as a document preparation system to generate easily shared web content.

• Goal: understand best practices for reproducible documents using Quarto
• Motivation: cultivate your analyses as living, shared resources

3.2 Quarto

Quarto is a relatively new document preparation system that lets you create reproducible and
dynamic content that is easily shared with others. Quarto is integrated with RStudio and
allows you to combine plain text language with analysis code in the same document.

Quarto belongs to a class of literate programming tools called dynamic documents (Knuth
1984). It is not the first of its kind, but it builds substantially on its predecessors by bridging
multiple programming langues.

Advantages of creating analyses using Quarto include:

1. Clear demonstration of a workflow using plain text and code
2. Reproducible materials allow others to use your work
3. Easily shared content (e.g., on GitHub)
4. Keeping the data, analysis, and writing all in the same place

This next section will run through the very basics of creating a Quarto document, some of
the options for formatting, and how to generate shared content. You’ll follow along in this
module.

(1) Create a new project in RStudio, first open RStudio and select “New project” from the
File menu at the top.

23

Then select “New Directory”. Create a directory in a location that’s easy to find.

(2) Open a new Quarto file from the File menu under New file > Quarto Document.

Enter a title for the document (e.g., “Quarto practice”) and your name as the author.
Use the defaults for the other options and hit “Create”.

24

Save the file in the project root directory (give it any name you want).

(3) Let’s get familiar with the components of a Quarto document.

Tip

The three main components of a Quarto document are:

• YAML
• Code chunks
• Plain or Markdown text

The new file includes some template material showing the main components of a Quarto
document. The content at the top is called YAML, which defines global options for the
document.

25

https://quarto.org/docs/get-started/hello/rstudio.html#yaml-header

title: "Quarto practice"
author: "Marcus Beck"
editor: visual

You’ll also notice that there’s a button on the top-left that lets you toggle between
“source” or “visual” editor mode. The source editor simply lets you add text to the
document, whereas the visual editor lets you add content that is partially rendered.
First time Quarto users may prefer the visual editor.

Using the visual editor, we can insert a code chunk (or code cell). This can be done by
selecting the appropriate option from the Insert menu. Note the variety of programming
langues that can be used with the code chunk.

We can enter any code we want in the code chunks, including options for how the code
chunk is evaluated. Options are specified using the hashpipe notation, #|.

```{r}
#| echo: true
print('Hello Quarto!')

26



```

When the file is rendered, the code is run and results displayed in the output. There are
many options to change how code chunks are executed, which we’ll discuss below.

print('Hello Quarto!')

[1] "Hello Quarto!"

We can also run the code chunks separately without rendering the file using the arrow
buttons on the top right in the source document. This can be useful for quickly evaluating
your code as you include it in the file.

Tip

Code chunks are executed in the order they appear in the document when a .qmd
file is rendered.

Descriptive text can be entered anywhere else in the file. This is where we can describe
in plain language what our analysis does or any other relevant information. Text can
be entered as-is or using simple markdown text that can format the appearance of the
output. If you’re using the visual editor, you can use some of the items in the file menu
to modify the text appearance. In the source editor, you can manually enter markdown
text:

When the file is rendered, the markdown text will be formatted. The text will already
be formatted if you’re using the visual editor:

I can write anything I want right here. Here’s some bold text.

I can also make lists

1. Item 1
2. Item 2

(4) Render the .qmd file to the output format.

The source file is a .qmd document. We need to render the document to create the
output format - HTML (default), PDF, or Word. The following happens when you hit
the render button at the top.

27

https://tbep-tech.github.io/flafs-os-workshop/impact.html#code-chunk-options
https://quarto.org/docs/authoring/markdown-basics.html

Here’s what your RStudio session should look like (note the three parts of the source
.qmd document - YAML, code chunk, and Markdown text). The rendered HTML file
will appear in the Viewer pane on the right.

Tip

A rendered Quarto document as an HTML, PDF, Word, or other file format is
stand-alone and can be shared with anybody!

3.2.1 Code chunk options

The behavior of the code chunks when the file is rendered can be changed using the many
options available in Quarto. This can be useful for a few reasons.

1. Only displaying the output of a code chunk
2. Only displaying the code and not running the chunk
3. Running the code without displaying output for use in other parts of the document

28

https://quarto.org/docs/reference/cells/cells-knitr.html
https://quarto.org/docs/reference/cells/cells-knitr.html

4. Suppressing warnings and messages
5. Defining table or figure options (e.g., height, width, captions, etc.)

Code chunk options can be applied globally to all chunks in the document or separately for
each chunk.

To apply them globally, they’ll look something like this in the YAML, where options are added
after execute:

title: "My Document"

execute:
echo: false
warning: false

Tip

Be careful with indentation in the YAML, the document won’t render if the indentation
is incorrect.

To apply to individual code chunks, use the #| (hashpipe) notation at the top of the code
chunk. This will override any global options if you’ve included them in the top YAML. Below,
echo: true indicates that the code will be displayed in the rendered output.

```{r}
#| echo: true
plot(1:10)
```

Here’s a short list of other useful execution options:

Option Description
eval Evaluate the code chunk (if false, just echos the code into the output).
echo Include the source code in output
output Include the results of executing the code in the output (true, false, or asis to

indicate that the output is raw markdown and should not have any of Quarto’s
standard enclosing markdown).

warningInclude warnings in the output.
error Include errors in the output (note that this implies that errors executing code will

not halt processing of the document).
includeCatch all for preventing any output (code or results) from being included

(e.g. include: false suppresses all output from the code block).

29

Option Description
messageInclude messages in rendered output

R code can also be executed “inline” outside of code chunks. This can be useful if you want
to include statements that reference particular values or information that is linked directly to
data. Inline R code is entered using the r syntax.

Text with inline R code will look like this when the document is rendered.

I can enter inline text like 2.

3.2.2 Figures and tables

Figures and tables are easily added in Quarto, using either R code or importing from an
external source.

Any figures created in code chunks will be included in the rendered output. Relevant
code chunk options for figures include fig-height, fig-width, fig-cap, label (for
cross-referencing) and fig-align.

```{r}
#| label: fig-myhist
#| fig-height: 4
#| fig-width: 6
#| fig-cap: "Here's my awesome histogram."
#| fig-align: "center"
vals <- rnorm(100)
hist(vals)
```

Figures can be cross-referenced in the text using the @ notation with the figure label.

Here's a cross-reference to @fig-myhist.

When the file is rendered, the appropriate figure number will be displayed with a link to the
figure:

Here’s a cross-reference to Figure 3.1.

Similarly, tabular output can be created inside code chunks.

30

Histogram of vals

vals

F
re

qu
en

cy

−4 −2 0 2 4

0
10

20
30

40

Figure 3.1: Here’s my awesome histogram.

31


```{r}
#| label: tbl-mytable
#| tbl-cap: "Here's my awesome table."
totab <- data.frame(

Species = c('Bluegill', 'Largemouth bass', 'Crappie'),
Count = c(12, 5, 4)

)
knitr::kable(totab)
```

Table 3.2: Here’s my awesome table.

Species Count
Bluegill 12
Largemouth bass 5
Crappie 4

And a cross-reference:

Here's a cross-reference to @tbl-mytable.

Here’s a cross-reference to Table 3.2.

Tip

Label tags for tables and figures should include the tbl- or fig- prefix for proper cross-
referencing.

Figures can also be imported from an external source (e.g., from your computer or the web)
using the notation, where the image is in the img folder in my working directory. You
can also simply add a figure from the file menu using the Visual editor.

You can also add a figure from a URL using the same notation.

32

Adding captions and labels to external figures looks something like this:

![Here's a beautiful crappie](img/blackcrappie.jpg){#fig-crappie}

Figure 3.2: Here’s a beautiful crappie

The cross-reference is done the same.

Here's a cross-reference to @fig-crappie

Here’s a cross-reference to Figure 3.2.

Likewise, tables can be imported from an external source (e.g., Excel). You’ll want to do this
in a code chunk and add the appropriate options (e.g., to cross-reference Table 3.3).

```{r}
#| label: tbl-habitats
#| tbl-cap: "The first six rows of our tidy data"
mytab <- readxl::read_excel('data/tidy.xlsx')[1:6, ]
knitr::kable(mytab)
```

Table 3.3: The first six rows of our tidy data

Location Habitat Year Acres Category
Clear Bay Seagrass 2019 519 B

33

Location Habitat Year Acres Category
Clear Bay Oysters 2019 390 B
Clear Bay Sand 2019 742 C
Fish Bay Seagrass 2019 930 B
Fish Bay Oysters 2019 680 A
Fish Bay Sand 2019 611 A

Visit these links for full details on figures and tables in Quarto. R also has a rich library of
packages for producing tables, most of which play nice with Quarto.

3.2.3 Output options

Rendering a Quarto file to an HTML, PDF, or Word document is as simple as adding the
appropriate option to the YAML. This is done by choosing the format when you create a new
Quarto file:

34

https://quarto.org/docs/authoring/figures.html
https://quarto.org/docs/authoring/tables.html
https://towardsdatascience.com/top-7-packages-for-making-beautiful-tables-in-r-7683d054e541
https://towardsdatascience.com/top-7-packages-for-making-beautiful-tables-in-r-7683d054e541

The output format can also be added in the YAML of the document.

title: "Quarto practice"
author: "Marcus Beck"
editor: visual
format: html

Tip

The default output format is HTML and it does not need to be added explicitly to the
YAML.

Alternative formats are specified the same way (i.e., Word and PDF).

35

title: "Quarto practice"
author: "Marcus Beck"
editor: visual
format: docx

title: "Quarto practice"
author: "Marcus Beck"
editor: visual
format: pdf

You can also specify multiple formats (note the indentation). The default setting just in-
dicates that we want to use all default options for each format and this option must be
included.

title: "Quarto practice"
author: "Marcus Beck"
editor: visual
format:

html: default
docx: default
pdf: default

You can use the dropdown menu to render each file format one at a time. The dropdown menu
will show the options that are included in the YAML.

You can also render all formats at once using the quarto package in the console. The path to

36

your file will differ depending on where it is in your working directory.

quarto::quarto_render('data/quartoex.qmd')

Or you can render all formats at once using the render command in the terminal (terminal
tab, bottom left pane of RStudio). This requires the separate installation of Quarto described
in the setup. This is the Quarto Command Line Interface (CLI).

Listing 3.1 Terminal

quarto render data/quartoex.qmd

Rendering a file to PDF uses LaTeX and you’ll need to install tinytex before you can use this
option. This can also be done in the terminal.

Listing 3.2 Terminal

quarto install tool tinytex

There are several options you can include in the YAML to control the formatting of the output.
Some of the options apply to all format types, whereas others are specific to a type. Here’s an
example building out these options.

title: "Quarto practice"
author: "Marcus Beck"
editor: visual
toc: true
number-sections: true
format:

html:
code-fold: true

docx: default
pdf:

geometry:
- top=30mm
- left=0mm

In the above example, there are two new options that apply globally to the HTML, Word, and
PDF outputs. Specifically, we’ve indicated that we’d like a table of contents (toc: true) and

37

https://tbep-tech.github.io/flafs-os-workshop/setup.html#install-quarto
https://yihui.org/tinytex/

that the sections should be numbered (number-sections: true) in the rendered documents.

We’ve also added some specific options to the HTML and PDF output. For the HTML output,
we’ve indicated that we want the code chunks to be folded (i.e., toggle between seen and not
seen, code-fold: true). For the PDF output, we’ve changed the geometry of the margins
using the geometry options.

Here’s what the HTML output would look like:

There are many other options available for each output format, as well as other format types.
View the full list here.

3.2.4 Citations and References

One of the more valuable aspects of Quarto is the ability to easily add and reference other works
in your document. This includes finding papers and reports, citing them in your document,
and formatting references - all with relative ease in Quarto.

You can of course do this using the source editor, but it’s slightly easier using the visual editor.
If we switch to visual mode (top-left button of the .qmd file), you can type a forward-slash
to view a menu of items to insert in the document. Just start typing text to search items to
insert.

Tip

The Insert Anything tool in the visual editor is useful to… insert anything! Just execute
/ at the beginning of a line or Ctrl/Cmd + / after some text.

38

https://quarto.org/docs/output-formats/all-formats.html
https://quarto.org/docs/visual-editor/options.html#insert-anything

You can also insert a citation from the menu at the top of the .qmd file.

39

Either option will open the citation menu where you can add citations from a variety of sources
(ie., Zotero, DOI, CrossRef, PubMed, or DataCite).

For example, we can copy/paste a DOI to find a reference of interest.

Or we can search by title.

40

https://quarto.org/docs/visual-editor/technical.html#citations-from-zotero
https://quarto.org/docs/visual-editor/technical.html#citations-from-dois
https://www.crossref.org/
https://pubmed.ncbi.nlm.nih.gov/
https://datacite.org/

Once the paper is found, you can click the Insert button to add it to your document. This
adds a reference file, information in the YAML, and the in-text citation. The reference file will
be called references.bib by default and includes a BibTeX formatted reference that looks
like this:

@article{shafland1982,
title = {Lower lethal temperatures for fourteen non-native fishes in Florida},
author = {Shafland, Paul L. and Pestrak, James M.},
year = {1982},
month = {03},
date = {1982-03},
journal = {Environmental Biology of Fishes},
pages = {149--156},
volume = {7},
number = {2},
doi = {10.1007/bf00001785},
url = {http://dx.doi.org/10.1007/BF00001785},
langid = {en}

41

http://www.bibtex.org/

}

The YAML file will now indicate the reference file to use that includes the references
(bibliography: references.bib).

title: "Quarto practice"
author: "Marcus Beck"
editor: visual
bibliography: references.bib
toc: true
number-sections: true
format:

html:
code-fold: true

docx: default
pdf:

geometry:
- top=30mm
- left=0mm

The text citation will look like this, where @ is the tag used to reference the citation using the
identifier from the references file.

Many non-native species in Florida have lower lethal temperatures [@shafland1982].

When the Quarto file is rendered, the citation will be formatted and you’ll see it added to the
references section at the end of the document.

Many non-native species in Florida have lower lethal temperatures (Shafland and Pestrak
1982).

The @ citation syntax also has different options for displaying the citation in the text (full
explanation here). For example, omitting the brackets does the following:

@shafland1982 state that many non-native species in Florida have lower lethal temperatures.

42

https://quarto.org/docs/authoring/footnotes-and-citations.html

Shafland and Pestrak (1982) state that many non-native species in Florida have lower lethal
temperatures.

Additional information about citations in Quarto can be found here.

3.2.5 Publishing

A rendered Quarto file can be shared with anyone as a standalone document. The file can also
be hosted online and shared by URL. This latter approach is useful to make the document
available to anyone with the web address.

The easiest way to do this is to publish your document to RPubs, a free service from Posit for

sharing web documents. Click the publish button on the top-right of the editor toolbar.
You will be prompted to create an account if you don’t have one already.

This can also be done using the quarto R package in the console.

quarto::quarto_publish_doc(
"data/quartoex.qmd",
server = "rpubs.com"
)

You can also use the Quarto CLI in the terminal. Here we are publishing the document to
Quarto Pub.

Listing 3.3 Terminal

quarto publish quarto-pub data/quartoex.qmd

If your Quarto document is in an RStudio project on GitHub, you can also publish to GitHub
Pages.

Listing 3.4 Terminal

quarto publish gh-pages data/quartoex.qmd

43

https://quarto.org/docs/get-started/authoring/rstudio.html#citations
https://rpubs.com/
https://quartopub.com/
https://pages.github.com/
https://pages.github.com/

3.3 Summary

In this module we learned the basics of creating dynamic documents with Quarto that combine
markdown text with R code. There’s much, much more Quarto can do for you. Please visit
https://quarto.org/ for more information on how you can use these documents to fully leverage
their potential for open science.

44

https://quarto.org/

Part II

Extra modules

45

4 Principles of tidy data

Tabular data allow you to store information, where observations are in rows and variables are
in columns. It’s very common to try to make tabular data more than it should be. Unless you
spend a lot of time working with data, it can be difficult to recognize common mistakes that
lead to table abuse.

Before we get into tidy data, we need to discuss some of the downfalls of Excel as a data
management system. There are many examples that demonstrate how Excel has contributed
to costly mistakes through table abuse or outright negligence, often to the detriment of science
(Ziemann, Eren, and El-Osta 2016).

Excel allows you to abuse your data in many ways, such as adding color to cells, embedding
formulas, and automatically formatting cell types. This creates problems when the organi-
zation is ambiguous and only has meaning inside the head of the person who created the
spreadsheet. Embedding formulas that reference specific locations in or across spreadsheets is
also a nightmare scenario for reproducibility.

46

https://eusprig.org/research-info/horror-stories/

47

If you absolutely must use Excel to store data, the only acceptable format is a rectangular,
flat file. This is typically saved as a .csv file. What do we mean by this?

A rectangular file:

Store data only in rows and columns in matrix format (e.g., 10 rows x 5 columns),
with no “dangling” cells that have values outside of the grid or more than one table
in a spreadsheet.

A flat file:

No cell formatting, no embedded formulas, no multiple spreadsheets in the same
file, and data entered only as alphanumeric characters.

Broman and Woo (2018) provide an excellent guide that expands on these ideas. Essentially,
these best practices force you to isolate the analysis from the data - many people use Excel to
mix the two, leading to problems.

Now we can talk about tidy data. The tidy data principles developed by Hadley Wickham
(Wickham 2014) are a set of simple rules for storing tabular data that have motivated the
development of the wildly popular tidyverse suite of R packages (Wickham et al. 2019). The
rules are simple:

1. Each variable must have its own column;
2. Each observation must have its own row; and,
3. Each value must have its own cell.

Graphically, these rules are shown below (from Wickham and Grolemund 2017):

The following examples show five tables represented in different arrangements. Only one of
the tables is tidy - which one?

Only the first table is tidy - each variable has its own column, each observation has its own
row, and each value has its own cell. Table 2 violates the first rule, Table 3 violates the third
rule, and tables 4a and 4b violate the first and second rules.

48

https://www.tidyverse.org/

Figure 4.1: Table 1

Figure 4.2: Table 2

49

Figure 4.3: Table 3

Figure 4.4: Table 4a Figure 4.5: Table 4b

50

Exercise and discussion

Download this untidy dataset and make it tidy using your preferred software.

51

https://github.com/tbep-tech/tbep-os-workshop/raw/main/data/untidy.xlsx

5 Addressing implementation barriers

5.1 Goals and motivation

What does it mean to use open science in the real world? It’s great to talk about the value of
open science and the tools you can use, but it’s a completely different ball game when it comes
to putting these ideas into practice. Our goal is that you leave this workshop an advocate
and early adopter for the ideas we discussed today - spread these ideas to your peers and
colleagues! To realistically achieve this goal, we will talk about some of the challenges you will
face so you can develop a realistic expectation of what’s to come.

• Goal: Understand common hurdles in adopting open science and how to overcome
them

• Motivation: Become the “open science” expert at your institution!

5.2 Learning curves

Challenge

It’s hard to learn new tools!

Solution

It’s an investment, look to the community!

You’ve probably seen a graphic like this if you’ve ever taken a course in R or Python. The
hope is that you’re able to quickly reach the land of sunshine and bunnies, but the path is
treacherous and even insurmountable for some.

A huge obstacle in using open science is that the toolsets can have steep learning curves.
More popular platforms, such as Excel, are used by many because they’re simple and intuitive.
However, as noted earlier, FAIR workflows and tools are sacrificed for ease of use.

Although it’s true that adopting new tools will slow forward progress, this is only tempo-
rary. Consider your path towards learning new platforms an investment in your future. The
immediate benefit may not be apparent, but you’ll soon wonder how you ever got by before.

52

It’s also helpful to think about the broader community that can support you along this journey.
Learning alone can be discouraging and we strongly recommend that you tap into the diverse
community of educators, mentors, bloggers, and friends that can help. Even you can create a
community of practice!

Exercise and discussion

How can you engage your peers to develop a shared workspace to learn new tools? What tools
will you learn?

5.3 Fear of exposure

Challenge

Being open makes me nervous!

Solution

Being open helps you collaborate, increases competitiveness, and creates a better scientific
product!

Practicing open science can feel like science in a fish bowl. Although this is kind of the
goal, many view this transparency as a liability. Many fear having their ideas “scooped” or

53

54

losing credibility because of greater exposure of mistakes. These are real concerns that require
consideration when working towards more open workflows.

In conventional academic settings, competition for resources (e.g., via grant funding) is a real
issue and being open can be seen as a risk to the competitive edge. We cannot dismiss this
fact, but rather we can think about a lack of openness as a hindrance to forward progress and
stifled creativity.

Think about being open as a means to finding your next collaborator. Creating FAIR data
opens the door for others to engage with your science. In fact, being open can increase the
competitiveness of research proposals by building a stronger team that collaborates and shares
data through better workflows.

First time practitioners of open science also worry about the risk of “airing their dirty laundry”.
By exposing the process and potential mistakes, many worry that their integrity as scientists
may be questioned.

These fears are unfounded as the scientific process by definition is iterative. Hypotheses are
supported or refuted through trial and error - if you’re getting your answer after one pass,
you’re probably not doing it right. Making the process more transparent can help build trust
as your collaborators can better appreciate how decisions and conclusions were made.

Mistakes in research are also very common, much more so than many people realize. By being
open, it is true that mistakes are more visible, but this also provides a mechanism for fixing.
Being open can lead to a better product by simply having more eyes on the process. It also
helps normalize mistakes as part of the process - perfection is an unrealistic expectation.

Exercise and discussion

What are your personal concerns about adopting open science?

5.4 What does it mean to be open?

Challenge

People and institutions define open differently!

Solution

Understand the context and demonstrate the value!

Also realize that open science can mean different things to different people. By extension, this
also applies to institutions. We presented the five schools of open science to help conceptualize
ideas and tools when we discuss what it means to different groups.

55

Think about your employer and what they might care about if you advocate for adoption of
open science. Do you need to convince them that there is value in being open? What is their
value proposition? What are the hurdles to achieving openness at your institution?

For many institutions, being open may come with IT hurdles as you push for alternative
software platforms. Working with IT staff to develop trust and comfort for new software may
be your burden, but as always, it’s an investment in the future.

Maybe there are legal contexts to being open. For example, Florida has the “Sunshine” law
that makes all government communications public record. What does this mean for using new
workflows in open science? Is this is an improvement or a liability (see previous section)?

If you’re an administrator or manager, maybe you’re the one that makes the call about being
open. It’s important for you to create a culture that promotes and supports open science.
Allow space and time for your staff to learn new skills. Realize that investing time in open
science is an investment in the future.

Exercise and discussion

What does being open mean to you? What do you think being open means to your employer?

5.5 Something is better than nothing

Challenge

Doing all the things is impossible!

Solution

Start small, incremental progress is the name of the game!

First time open science enthusiasts can be overwhelmed by the apparent need to check all
the boxes on the open science list. There’s often a prevailing sentiment that you’re not doing
open science unless you do all the things. This is simply not true. Just remember that doing
something is a huge improvement over doing nothing.

Openness in science exists on a spectrum. Your goal should be incremental movement away
from the completely closed end of the spectrum. Perhaps you set a goal of only accomplishing
one open science task for a particular project. Maybe you start by developing a simple meta-
data text file or developing a data dictionary. Or maybe you make a commitment to try a
new communication platform for collaborative engagement.

Channeling this concept, Wilson et al. (2017) discuss “good enough practices” in scientific
computing, acknowledging that very few of us are professionally trained in these disciplines
and sometimes “good enough” is all we can ask for. Lowenberg et al. (2021) also advocate for
simple adoption, rather than perfection, when it comes to data citation practices.

56

https://myfloridalegal.com/pages.nsf/Main/DC0B20B7DC22B7418525791B006A54E4

Also, be mindful of complacency (and apathy, at its very worst). Just because you think you’ve
mastered a task doesn’t mean you can’t continue to learn. Always strive to improve yourself
and the tools you use to be open. The fact that the toolbox is constantly evolving makes this
a necessity.

So, be kind to yourself when learning new skills and realize that the first step will likely be
frustration, but through frustration comes experience. The more comfortable you become with
a task, the more likely you’ll attempt new tasks in the future. I promise you will see a return
on your investment.

Exercise and discussion

What are some simple things you can do to begin adopting open science?

57

6 Additional tools for collaboration

Below we introduce some web-based tools that you can use to improve collaboration and
openness. We present them as a suite of options to consider based on the pros and cons
associated with each tool. This is by no means a comprehensive list, but it should get you
started towards better collaboration in an open environment.

6.1 Slack

https://slack.com/

What

An online messaging platform for internal communication. Conversations can be organized by
topic (via channels) or you can send direct messages to one or more team members. You can
have multiple workspaces for different groups.

Pros

Alleviate email overload through quick, informal messaging. Offers a fresh approach to online
communication.

Cons

Yet another thing to monitor. Free subscription limits archive of messages. Communication
is limited to those in the same workspace.

58

https://slack.com/

6.2 Trello

https://trello.com/

What

A Kanban style workflow organization platform. Can be used for personal organization or in
teams. Card management allows you to assign due dates, add attachments, make checklists,
assign tasks to yourself or team members, and label by themes.

Pros

Easy to use and can upgrade with “power-ups” for integration with other services (e.g., Google).
Use across locations (e.g., from home or in the office) is easy because it’s based in a web
browser.

Cons

Not entirely open because it’s only visible to yourself or those you explicitly invite. Free version
is limited to only a handful of “power-ups”.

6.3 Google Drive

https://google.com/drive

What

Cloud-based platform for sharing documents, worksheets, slides, etc. Follows a familiar file-
based structure that is common to most operating systems.

Pros

Easy to use and can be a very open space for collaboration. Fairly interoperable with different
file formats. Some functionality with version control (i.e., ability to “revert” to previous
versions and to view changes).

59

https://trello.com/
https://google.com/drive

Cons

Requires a Google account and access can be tricky depending on institution. Even though
some versioning is provided, the format can encourage poor file management. Who knows
what Google is doing with your data.

6.4 Office 365

https://www.microsoft.com/en-us/microsoft-365

What

Cloud-based platform for secure sharing of Microsoft documents, worksheets, slides, etc.

Pros

Easy to use and fully supports Microsoft products. Low barrier of inclusion to others that are
already using Microsoft products.

Cons

Requires a Microsoft account and access can be tricky depending on institution. Maintains
dependency on expensive Microsoft products that aren’t reproducible or interoperable. Very
often used in closed workflows.

6.5 GitHub

https://github.com

What

Cloud-based platform for sharing code with Git version control. Supports sharing of most file
types, although code and text-based files are the primary use.

Pros

60

https://www.microsoft.com/en-us/microsoft-365
https://github.com

Collaborative and fully transparent work environment for files under version control. Supports
workflow management through issue tracking and Kanban style project boards. Links to third-
party platforms for archiving and DOI generation (e.g., Zenodo). Octocat mascot is super
cute.

Cons

Learning curve is steep if you want to fully leverage version control. Not a formal data archival
service by itself and file sizes are limited.

61

https://zenodo.org/

A Setup for the workshop

Thanks for your interest in the open science workshop. You will need to do the following,
outlined below, before the workshop. The last item is optional, but strongly encouraged.

1. Install R: link
2. Install RStudio: link
3. Install Quarto: link
4. GitHub create account: link
5. Install Git (optional): link

Most of these steps will require administrative privileges on a computer. Work with your IT
staff to complete the setup if you do not have these privileges. Please reach out if you have
any issues with installation: mbeck@tbep.org

A.1 Install R and RStudio

R and RStudio are separate downloads and installations. R is the underlying statistical
computing software. RStudio is a graphical integrated development environment (IDE) that
makes using R much easier and more interactive. You need to install R before you install
RStudio.

Thanks to the USGS-R Training group and Data Carpentry for making their installation
materials available. The following instructions come directly from their materials, with a few
minor edits to help you get set up.

A.1.1 Windows: Download and install R

Go to CRAN and download the R installer for Windows. Make sure to choose the latest stable
version (v4.2.3 as of April 2023).

Once the installer downloads, Right-click on it and select “Run as administrator”.

Type in your credentials and click yes (or if you don’t have administrator access have your IT
rep install with Admin privileges).

62

https://cran.r-project.org/bin/windows/base/
https://posit.co/download/rstudio-desktop/
https://quarto.org/docs/get-started/
https://github.com
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
mailto:mbeck@tbep.org
https://owi.usgs.gov/R/training.html
https://datacarpentry.org/R-ecology-lesson/index.html
https://cran.rstudio.com/bin/windows/base/

You can click next through the standard dialogs and accept most defaults. But at the desti-
nation screen, please verify that it is installing it to C:\Program Files\R

63

At the “Select Components” screen, you can accept the default and install both 32-bit and
64-bit versions.

64

At this screen, uncheck ‘Create a desktop icon’ because non-admin users in Windows will be
unable to delete it.

65

A.1.2 Windows: Download and install RStudio

Download RStudio from here.

After download, double-click the installer. It will ask for your administrator credentials to
install (you might need to have your IT rep install again).

Accept all the default options for the RStudio install.

66

https://www.rstudio.com/products/rstudio/download/#download

A.1.3 macOS: Download and install R

• Download and install R from the CRAN website for Mac here.
• Select the .pkg file for the latest R version
• Double click on the downloaded file to install R
• It is also a good idea to install XQuartz (needed by some packages)

A.1.4 macOS: Download and install RStudio

• Go to the RStudio download page
• Under Installers select the appropriate RStudio download file for macOS
• Double click the file to install RStudio

A.1.5 Check Install

Once installed, RStudio should be accessible from the start menu. Start up RStudio. Once
running it should look something like this:

67

https://cran.r-project.org/bin/macosx/
https://www.xquartz.org/
https://www.rstudio.com/products/rstudio/download/#download

A.2 Install Quarto

A visual editor for Quarto is installed with RStudio. However, you’ll need to install Quarto
CLI to make full use of its features.

Navigate to https://quarto.org/docs/get-started/. You’ll see a screen that looks like this:

Select the download appropriate for your operating system (Windows is the big blue button).
After the file is downloaded, navigate to the folder containing the file, double-click to install,
and accept the default settings at the prompts.

After installation is done, open RStudio (or close and open again) and select the Terminal tab.
This tab is located on the bottom-left pane, next to the Console tab. Type quarto check at
the prompt and press enter. You should see something like this if installation was successful.

68

https://quarto.org/docs/get-started/

A.3 Create GitHub account

Open a web browser and enter the url https://github.com. On the top-right, you should see a
button to sign up. Click the button and register an account by choosing an email, username,
and password.

A.4 Install Git (optional)

After you’ve registered a new GitHub account, you can install the Git software on your com-
puter. Git is version control software used by RStudio that allows you to access GitHub.

69

https://github.com

Open the url https://git-scm.com/book/en/v2/Getting-Started-Installing-Git and follow the
instructions for your operating system.

After Git is installed, open RStudio (or close and open again) to verify the installation. You
should see a new “Git” tab located in the top-right pane of RStudio.

A.4.1 Make sure RStudio can talk to GitHub via Git

The next step can be a bit tricky, but is essential if you want to access your GitHub using
RStudio and Git. First, install the usethis R package in RStudio.

install.packages("usethis")

You must let Git know who you are and that you have permission to write to a GitHub
repository. First, let Git know who you are, where you enter your user name and email
associated with the account from the previous step.

usethis::use_git_config(user.name="Jane Doe", user.email="jane@example.org")

Next, you need to setup a personal access token (PAT) that defines the permissions to write
to a repository. This can be done as follows:

usethis::create_github_token()

Then follow the remaining prompts to complete the PAT creation. A more thorough explana-
tion can be found here.

A.5 This is hard!

If you have trouble installing any of the software prior to the workshop, you can use use
RStudio in the cloud on the Posit website. This is only a backup option and we strongly
encourage you to troubleshoot the installation when able.

To use RStudio in the cloud, copy this link and paste it in a web browser: https://posit.cloud/
content/5775087

If you do not have a Posit Cloud account, you will see this screen when you first visit the
URL:

70

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://happygitwithr.com/https-pat.html#https-pat
https://posit.cloud/content/5775087
https://posit.cloud/content/5775087

You can setup an account for free using a login you create or through a third-party (Google
or GitHub).

After your account is setup, you should a screen that looks like this:

71

https://login.rstudio.cloud/register?redirect=https%3A%2F%2Fclient.login.rstudio.cloud%2Foauth%2Flogin%3Fshow_auth%3D0%26show_login%3D1%26show_setup%3D1

You’ll see that this is a TEMPORARY COPY under your account. Make it permanent by
clicking the button on top. This will save any changes you make to this project under your
account.

72

B Introduction to R

B.1 RStudio

RStudio is the go-to Interactive Development Environment (IDE) for R. Rstudio includes many
features to improve the user’s experience.

Let’s get familiar with RStudio.

B.1.1 Open R and RStudio

Find the RStudio shortcut on your computer and fire it up. You should see something like
this:

There are four panes in RStudio:

• Source: Your primary window for writing code to send to the console, this is where you
write and save R “scripts”

• Console: This is where code is executed in R
• Environment, History, etc.: A tabbed window showing your working environment,

code execution history, and other useful things
• Files, plots, etc.: A tabbed window showing a file explorer, a plot window, list of

installed packages, help files, and viewer

73

https://www.rstudio.com/

B.1.2 Scripting

In most cases, you will not enter and execute code directly in the console. Code can be written
in a script and then sent directly to the console.

Open a new script from the File menu…

B.1.3 Executing code in RStudio

After you write code in an R script, it can be sent to the Console to run the code. There are
two ways to do this. First, you can hit the Run button at the top right of the scripting window.
Second, you can use ctrl+enter (cmd+enter on a Mac). Either option will run the line(s) of
script that are selected.

74

B.2 R language fundamentals

R is built around functions. The basic syntax of a function follows the form: function_name(arg1,
arg2, ...).

With the base install, you will gain access to many functions (2344, to be exact). Some
examples:

print
print("hello world!")

[1] "hello world!"

sequence
seq(1, 10)

[1] 1 2 3 4 5 6 7 8 9 10

75

random numbers
rnorm(100, mean = 10, sd = 2)

[1] 6.612557 10.089949 12.010659 9.802319 14.233436 11.461050 9.838274
[8] 11.558664 13.436570 11.635146 7.018258 5.313620 12.791497 11.841679

[15] 7.603028 8.942429 7.687054 11.409549 9.786670 8.679590 12.110723
[22] 9.945106 12.300088 7.819878 10.953883 9.470884 9.107937 8.077909
[29] 9.890898 10.536920 8.345983 9.800401 9.493016 9.806051 9.847020
[36] 9.232886 8.378464 9.182973 7.458866 9.903152 13.077132 11.344901
[43] 7.792986 7.260136 10.407155 12.584738 8.793956 7.735837 10.528213
[50] 8.887369 12.675406 13.235036 13.981768 13.652461 12.446376 9.288056
[57] 12.676033 10.252983 10.642052 10.679302 7.973046 8.023710 9.148277
[64] 13.085516 10.318845 8.770324 11.116972 7.315381 7.075919 13.762210
[71] 12.235016 8.066741 5.660571 11.710414 8.270554 9.246560 8.371205
[78] 9.178072 15.220701 7.277744 11.099454 7.370773 11.070819 11.907356
[85] 12.824182 10.935944 11.731090 10.499268 7.341888 7.858630 9.285029
[92] 9.690114 8.270629 7.770154 7.679524 9.509234 9.892842 10.230427
[99] 7.011806 14.279400

average
mean(rnorm(100))

[1] -0.1048955

sum
sum(rnorm(100))

[1] 11.36563

Very often you will see functions used like this:

my_random_sum <- sum(rnorm(100))

The first part of the line is the name of an object that you make up. The second bit, <-, is
the assignment operator. This tells R to take the result of sum(rnorm(100)) and store it in
an object named, my_random_sum. It is stored in the environment and can be used by just
executing it’s name in the console.

my_random_sum

[1] 1.305902

76

B.2.1 What is the environment?

There are two outcomes when you run code. First, the code will simply print output directly
in the console. Second, there is no output because you have stored it as a variable using <-.
Output that is stored is saved in the environment. The environment is the collection of named
objects that are stored in memory for your current R session.

B.3 Packages

The base installation of R is quite powerful. Packages allow you to include new methods for
use in R.

B.3.1 CRAN

Many packages are available on CRAN, The Comprehensive R Archive Network. This is where
you download R and also where most will gain access to packages. As of 2023-05-10, there are
19473 packages on CRAN!

B.3.2 Installing packages

When a package gets installed, that means the source code is downloaded and put into your
library. A default library location is set for you.

We use the install.packages() function to download and install a package. Here, we install
the readxl package, used below, which is used to upload data from and Excel file.

install.packages("readxl")

You should see some text in the R console showing progress of the installation and a prompt
after installation is done.

After installation, you can load a package using the library() function. This makes all
functions in a package available for you to use.

library(readxl)

An important aspect of packages is that you only need to download them once, but every time
you start RStudio you need to load them with the library() function.

77

http://cran.r-project.org/

B.4 Data structures in R

Now we can talk about R data structures. Simply put, a data structure is a way for program-
ming languages to handle information storage.

B.4.1 Vectors (one-dimensional data)

The basic data format in R is a vector - a one-dimensional grouping of elements that have the
same type. These are all vectors and they are created with the c (concatenate) function:

dbl_var <- c(1, 2.5, 4.5)
int_var <- c(1L, 6L, 10L)
log_var <- c(TRUE, FALSE, T, F)
chr_var <- c("a", "b", "c")

The four types of vectors are double (or numeric), integer, logical, and character. The
following functions can return useful information about the vectors:

class(dbl_var)

[1] "numeric"

length(log_var)

[1] 4

B.4.2 Data frames (two-dimensional data)

A collection of vectors represented as one data object are often described as two-dimensional
data, like a spreadsheet, or in R speak, a data frame. Here’s a simple example:

ltrs <- c("a", "b", "c")
nums <- c(1, 2, 3)
logs <- c(T, F, T)
mydf <- data.frame(ltrs, nums, logs)
mydf

78

ltrs nums logs
1 a 1 TRUE
2 b 2 FALSE
3 c 3 TRUE

The only constraints required to make a data frame are:

1. Each column (vector) contains the same type of data

2. The number of observations in each column is equal.

B.5 Getting your data into R

It is the rare case when you manually enter your data in R. Most data analysis workflows
typically begin with importing a dataset from an external source. We’ll be using read_excel()
function from the readxl package.

We can import the ExampleSites.xlsx dataset as follows. Note the use of a relative file path.
You can see what R is using as your “working directory” using the getwd() function.

sitdat <- read_excel("data/ExampleSites.xlsx")

Let’s explore the dataset a bit.

get the dimensions
dim(sitdat)

[1] 11 5

get the column names
names(sitdat)

[1] "Monitoring Location ID" "Monitoring Location Name"
[3] "Monitoring Location Latitude" "Monitoring Location Longitude"
[5] "Location Group"

see the first six rows
head(sitdat)

79

A tibble: 6 x 5
`Monitoring Location ID` `Monitoring Location Name` Monitoring Location Lati~1
<chr> <chr> <dbl>

1 ABT-026 Rte 2, Concord 42.5
2 ABT-062 Rte 62, Acton 42.4
3 ABT-077 Rte 27/USGS, Maynard 42.4
4 ABT-144 Rte 62, Stow 42.4
5 ABT-237 Robin Hill Rd, Marlboro 42.3
6 ABT-301 Rte 9, Westboro 42.3
i abbreviated name: 1: `Monitoring Location Latitude`
i 2 more variables: `Monitoring Location Longitude` <dbl>,
`Location Group` <chr>

get the overall structure
str(sitdat)

tibble [11 x 5] (S3: tbl_df/tbl/data.frame)
$ Monitoring Location ID : chr [1:11] "ABT-026" "ABT-062" "ABT-077" "ABT-144" ...
$ Monitoring Location Name : chr [1:11] "Rte 2, Concord" "Rte 62, Acton" "Rte 27/USGS, Maynard" "Rte 62, Stow" ...
$ Monitoring Location Latitude : num [1:11] 42.5 42.4 42.4 42.4 42.3 ...
$ Monitoring Location Longitude: num [1:11] -71.4 -71.4 -71.4 -71.5 -71.6 ...
$ Location Group : chr [1:11] "Assabet" "Assabet" "Assabet" "Assabet" ...

You can also view a dataset in a spreadsheet style using the View() function:

View(sitdat)

B.6 Summary

In this intro we learned about R and Rstudio, some of the basic syntax and data structures
in R, and how to import files. You’ll be able to follow the rest of the workshop with this
knowledge. View the Resources page for additional training materials.

80

https://tbep-tech.github.io/flafs-os-workshop/resources.html

C Resources

The following is a non-exhaustive list of additional resources you can use for continued learning
on your open science journey.

C.1 Open Science Websites

• NCEAS Open Science for Synthesis workshop
• NCEAS Reproducible Research Techniques
• Open Science Foundation open science workshop
• Openscapes
• Openscapes Champions Lesson Series
• Supercharge your research: A 10 week plan for open data science
• ROpenSci guidance on creating a Code of Conduct
• NOAA Reproducible Reporting with R
• PeerJ collection on practical data science

C.2 Data Management Tools

• Environmental Data Initiative Data Management Resources
• University of California DMPTool
• US Geological Survey resources for Metadata Creation
• ELIXIR and others Data Stewardship Wizard
• TBEP Data Management SOP

C.3 TBEP R Trainings

• Peconic Estuary Program R training, recording
• TBEP June 2020 R training, recordings
• Writing functions in R
• R package development workflow
• A soft introduction to Shiny

81

https://nceas.github.io/oss-2017/lessons.html
https://learning.nceas.ucsb.edu/2020-02-RRCourse/
https://osf.io/k75r9/
https://www.openscapes.org/
https://openscapes.github.io/series/
https://www.nature.com/articles/d41586-019-03335-4
https://ropensci.org/blog/2016/12/21/commcallv12-review-coc/
https://noaa-iea.github.io/r3-train/index.html
https://peerj.com/collections/50-practicaldatascistats
https://environmentaldatainitiative.org/dm-resources/
https://dmptool.org/
https://www.usgs.gov/products/data-and-tools/data-management/metadata-creation
https://ds-wizard.org/
https://tbep-tech.github.io/data-management-sop
https://tbep-tech.github.io/pep-r-training
https://drive.google.com/file/d/1ZjVHFrVpw2uTKZw-BmD29umdbl6viutM/view?usp=sharing
https://tbep-tech.github.io/tbep-r-training/
https://www.youtube.com/watch?v=_RI4XMRWeV0&list=PLfJ6-D-exF9RM5TPtT4T0nxieqpr_R4pJ
https://tbep-tech.github.io/tbep-r-training/functions.html
https://tbep-tech.github.io/tbep-r-training/packages.html
https://tbep-tech.github.io/tbep-r-training/shiny.html

C.4 R Lessons & Tutorials

• Software Carpentry: R for Reproducible Scientific Analysis
• Data Carpentry: Geospatial Workshop
• Data Carpentry: R for Data Analysis and Visualization of Ecological Data
• Data Carpentry: Data Organization in Spreadsheets
• R for Water Resources Data Science
• RStudio Webinars, many topics
• R For Cats: Basic introduction site, with cats!
• Topical cheatsheets from RStudio, also viewed from the help menu
• Cheatsheet from CRAN of base R functions
• Totally awesome R-related artwork by Allison Horst
• Color reference PDF with text names, Color cheatsheet PDF from NCEAS

C.5 R eBooks/Courses

• Jenny Bryan’s Stat545.com
• Garrett Grolemund and Hadley Wickham’s R For Data Science
• Chester Ismay and Albert Y. Kim’s Modern DiveR
• Julia Silge and David Robinson Text Mining with R
• Hadley Wickham’s Advanced R
• Hadley Wickham’s R for Data Science
• Yihui Xie R Markdown: The Definitive Guide
• Winston Chang R Graphics Cookbook
• Wegman et al. Remote Sensing and GIS for Ecologists: Using Open Source Software
• Lovelace et al. Geocomputation with R
• Edszer Pebesma and Roger Bivand Spatial Data Science

C.6 Git/Github

• Jenny Bryan’s Happy Git and Github for the useR
• Git and GitHub for the Casual User
• Coding Club Intro to Github

82

http://data-lessons.github.io/gapminder-R/
https://datacarpentry.org/geospatial-workshop/
http://www.datacarpentry.org/R-ecology-lesson/
http://www.datacarpentry.org/spreadsheet-ecology-lesson/
https://www.r4wrds.com/
https://www.rstudio.com/resources/webinars/
http://rforcats.net/
http://www.rstudio.com/resources/cheatsheets/
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://github.com/allisonhorst/stats-illustrations
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
https://www.nceas.ucsb.edu/sites/default/files/2020-04/colorPaletteCheatsheet.pdf
http://stat545.com/
http://r4ds.had.co.nz/
https://ismayc.github.io/moderndiver-book/
http://tidytextmining.com/
http://adv-r.had.co.nz/
https://r4ds.had.co.nz
https://bookdown.org/yihui/rmarkdown/
http://www.cookbook-r.com/
http://book.ecosens.org/RSEbook/
https://geocompr.robinlovelace.net/
https://keen-swartz-3146c4.netlify.app/index.html
http://happygitwithr.com/
https://masalmon.eu/2023/01/12/git-github-casual/
https://ourcodingclub.github.io/2017/02/27/git.html

D Contributor Covenant Code of Conduct

D.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community
a harassment-free experience for everyone, regardless of age, body size, visible or invisible
disability, ethnicity, sex characteristics, gender identity and expression, level of experience,
education, socio-economic status, nationality, personal appearance, race, religion, or sexual
identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive,
and healthy community.

D.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people
• Being respectful of differing opinions, viewpoints, and experiences
• Giving and gracefully accepting constructive feedback
• Accepting responsibility and apologizing to those affected by our mistakes, and learning

from the experience
• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind
• Trolling, insulting or derogatory comments, and personal or political attacks
• Public or private harassment
• Publishing others’ private information, such as a physical or email address, without their

explicit permission
• Other conduct which could reasonably be considered inappropriate in a professional

setting

83

D.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable
behavior and will take appropriate and fair corrective action in response to any behavior that
they deem inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments,
commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of
Conduct, and will communicate reasons for moderation decisions when appropriate.

D.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an indi-
vidual is officially representing the community in public spaces. Examples of representing our
community include using an official e-mail address, posting via an official social media account,
or acting as an appointed representative at an online or offline event.

D.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the
community leaders responsible for enforcement at mbeck@tbep.org. All complaints will be
reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any
incident.

D.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the conse-
quences for any action they deem in violation of this Code of Conduct:

D.6.1 1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional
or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing clarity around
the nature of the violation and an explanation of why the behavior was inappropriate. A
public apology may be requested.

84

D.6.2 2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the
people involved, including unsolicited interaction with those enforcing the Code of Conduct,
for a specified period of time. This includes avoiding interactions in community spaces as
well as external channels like social media. Violating these terms may lead to a temporary or
permanent ban.

D.6.3 3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inap-
propriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with
the community for a specified period of time. No public or private interaction with the people
involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed
during this period. Violating these terms may lead to a permanent ban.

D.6.4 4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, includ-
ing sustained inappropriate behavior, harassment of an individual, or aggression toward or
disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

D.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement lad-
der.

For answers to common questions about this code of conduct, see the FAQ at https:
//www.contributor-covenant.org/faq. Translations are available at https://www.contributor-
covenant.org/translations.

85

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/mozilla/diversity
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations
https://www.contributor-covenant.org/translations

References
Broman, K. W., and K. H. Woo. 2018. “Data Organization in Spreadsheets.” The American

Statistician 72 (1): 2–10. https://doi.org/10.1080/00031305.2017.1375989.
Fecher, B., and S. Friesike. 2014. “Open Science: One Term, Five Schools of Thought.” In

Opening Science, 17–47. Springer, Cham.
Knuth, Donald Ervin. 1984. “Literate Programming.” The Computer Journal 27 (2): 97–111.

https://doi.org/10.1093/comjnl/27.2.97.
Lowenberg, Daniella, Rachael Lammey, Matthew B Jones, John Chodacki, and Martin Fenner.

2021. “Data Citation: Let’s Choose Adoption over Perfection.” Zenodo. https://doi.org/
10.5281/zenodo.4701079.

Michener, W. K., J. W. Brunt, J. J. Helly, T. B. Kirchner, and S. G. Stafford. 1997. “Non-
geospatial Metadata for the Ecological Sciences.” Ecological Applications 7 (1): 330–42.
https://doi.org/10.1890/1051-0761(1997)007%5B0330:NMFTES%5D2.0.CO;2.

Shafland, Paul L., and James M. Pestrak. 1982. “Lower Lethal Temperatures for Fourteen
Non-Native Fishes in Florida.” Environmental Biology of Fishes 7 (2): 149–56. https:
//doi.org/10.1007/bf00001785.

Wickham, H. 2014. “Tidy Data.” Journal of Statistical Software 59 (10): 1–23. https://doi.
org/10.18637/jss.v059.i10.

Wickham, H., M. Averick, J. Bryan, W. Chang, L. D’Agostino McGowan, R. François, G.
Grolemund, et al. 2019. “Welcome to the tidyverse.” Journal of Open Source Software 4
(43): 1686. https://doi.org/10.21105/joss.01686.

Wickham, H., and G. Grolemund. 2017. R for Data Science. Sebastopol, California:
O’Reilly.

Wilkinson, M. D., M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N.
Blomberg, et al. 2016. “The FAIR Guiding Principles for Scientific Data Management and
Stewardship.” Scientific Data 3 (160018). https://doi.org/10.1038/sdata.2016.18.

Wilson, G., J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, and T. K. Teal. 2017. “Good
Enough Practices in Scientific Computing.” PLoS Computational Biology 13 (6): e1005510.
https://doi.org/10.1371/journal.pcbi.1005510.

Ziemann, M., Y. Eren, and A. El-Osta. 2016. “Gene Name Errors Are Widespread in the
Scientific Literature.” Genome Biology 17 (1): 1–3. https://doi.org/10.1186/s13059-016-
1044-7.

86

https://doi.org/10.1080/00031305.2017.1375989
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.5281/zenodo.4701079
https://doi.org/10.5281/zenodo.4701079
https://doi.org/10.1890/1051-0761(1997)007%5B0330:NMFTES%5D2.0.CO;2
https://doi.org/10.1007/bf00001785
https://doi.org/10.1007/bf00001785
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.21105/joss.01686
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1186/s13059-016-1044-7
https://doi.org/10.1186/s13059-016-1044-7

	Course synopsis
	Prepare
	Agenda
	Instructor

	Modules
	Open science basics
	Goals and motivation
	Why open science?
	Learning and speaking the language of open science
	Schools of thought

	Open science for collaboration
	Goals and motivation
	Essential elements of collaboration
	Workflow management
	Version control
	Git and GitHub

	Open science for impactful products
	Goals and motivation
	Quarto
	Code chunk options
	Figures and tables
	Output options
	Citations and References
	Publishing

	Summary

	Extra modules
	Principles of tidy data
	Addressing implementation barriers
	Goals and motivation
	Learning curves
	Fear of exposure
	What does it mean to be open?
	Something is better than nothing

	Additional tools for collaboration
	Slack
	Trello
	Google Drive
	Office 365
	GitHub

	Appendices
	Setup for the workshop
	Install R and RStudio
	Windows: Download and install R
	Windows: Download and install RStudio
	macOS: Download and install R
	macOS: Download and install RStudio
	Check Install

	Install Quarto
	Create GitHub account
	Install Git (optional)
	Make sure RStudio can talk to GitHub via Git

	This is hard!

	Introduction to R
	RStudio
	Open R and RStudio
	Scripting
	Executing code in RStudio

	R language fundamentals
	What is the environment?

	Packages
	CRAN
	Installing packages

	Data structures in R
	Vectors (one-dimensional data)
	Data frames (two-dimensional data)

	Getting your data into R
	Summary

	Resources
	Open Science Websites
	Data Management Tools
	TBEP R Trainings
	R Lessons & Tutorials
	R eBooks/Courses
	Git/Github

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	References

