knitr::opts_chunk$set(echo = TRUE, warning = F, message = F)

library(sf)
library(RODBC)
library(dplyr)
library(here)

This workflow was developed as a test case for updating data used to estimate tidal creek assessment cateogires using FLDEP IWR run data. In this example, we use IWR Run 65, but in theory it should work with any IWR run. The only requirements are:

Below we set a path to the extracted location for the IWR database, load the tidal creek line file, and load the wbid polygon file.

# set database path
pth <- "~/Desktop/iwr2024_run65_2024-01-30/"

# # to explore
# con <- odbcConnectAccess2007('C:/Users/mbeck/Desktop/iwr2021_run61_2021-05-27/iwr_run61_05272021.accdb')
# sqlTables(con)
# sqlFetch(con, 'station list')

# source creek line file
tdlcrk <- st_read(here('shapes/TidalCreek_ALL_Line.shp'), quiet = T)

# wbid data, run 65 (url should not change betweem runs)
wbid <- st_read('https://ca.dep.state.fl.us/arcgis/rest/services/OpenData/WBIDS/MapServer/0/query?outFields=*&where=1%3D1&f=geojson', quiet = T) %>% 
  st_transform(crs = st_crs(tdlcrk))

Now we import the IWR run data for the entire state using an ODBC connection to the extracted folder. The following code just iterates through the .accdb files in the extracted folders, retrieves the data within a ten year window from the current run, and pulls out parameters of interest. Note that 11 years are subset based on the current year. This is done to accommodate IWR runs where incomplete data are present for the current year. This is done in a loop using a SQL. It only takes a few minutes to run and does not eat up a lot of memory.

# this retrieves most recent ten years of iwr data, including the current year and ten years prior
# filters only parameters in mcode below
# used ODBC connect to access file
# entire state

# .accdb files to query
dbs <- list.files(pth, pattern = 'rawDataDB.*\\.accdb$', full.names = T)

# the current year of interest, used to build the query for ten prior years
curyr <- 2023

# query building tools
mcode <- c("CHLAC","COLOR","COND","DO","DOSAT","NO3O2","ORGN","SALIN","TKN","TN","TP","TSS","TURB") %>% 
  paste0("masterCode = '", ., "'") %>% 
  paste0(., collapse = ' or ')
qry_fun <- function(tab, curyr){
  
  out <- paste0("select sta, year, month, day, masterCode, result, rCode from ", tab, " where year <= ", curyr, 
               " and (", mcode, ")"
               )
  return(out)
  
}

# loop through the accdb files
iwr <- NULL
for(db in dbs){
  
  cat(basename(db), '\n')
  
  # setup the connection
  con <- odbcConnectAccess2007(db)
  
  # build the query
  qry <- basename(db) %>% 
    gsub('DB|\\.accdb', '', .) %>% 
    qry_fun(curyr)
  
  # retrieve the data
  res <- sqlQuery(con, qry)
  
  # add it to the output
  iwr <- rbind(iwr, res)
  
}
## rawDataDB1.accdb 
## rawDataDB2.accdb 
## rawDataDB3.accdb 
## rawDataDB4.accdb
head(iwr)
##                sta year month day masterCode    result rCode
## 1 112WRD  02231400 2021     9   1       COND 201.00000  <NA>
## 2 112WRD  02231400 2021     9   1         DO   5.30000  <NA>
## 3 112WRD  02231400 2021     9   1       ORGN   0.27500     U
## 4 112WRD  02231400 2021     9   1         TN   0.17425     +
## 5 112WRD  02234600 2015     8  24       COND 361.00000  <NA>
## 6 112WRD  02234600 2015     8  24         DO   6.00000  <NA>

Now we need to get station lat/lon data for intersection with the tidal creek line layer. This is for the entire state and is retrieved from an ODBC connection to the extracted folder.

# from geojson for run65
# https://geodata.dep.state.fl.us/datasets/FDEP::impaired-waters-rule-iwr-stations/about
staraw <- st_read('https://ca.dep.state.fl.us/arcgis/rest/services/OpenData/IMPAIRED_WATERS/MapServer/1/query?outFields=*&where=1%3D1&f=geojson', quiet = T)
stas <- staraw %>% 
  filter(STATION_ID %in% iwr$sta) %>% 
  st_transform(crs = st_crs(tdlcrk))

# pull from access, currently doesn't work
# stas <- list.files(pth, pattern = '^iwr\\_run', full.names = T) %>% 
#   odbcConnectAccess2007 %>% 
#   sqlFetch('station list') %>% 
#   filter(STA %in% unique(iwr$sta)) %>% 
#   st_as_sf(coords = c('LONG', 'LAT'), crs = 4326) %>% 
#   st_transform(crs = st_crs(tdlcrk))

head(stas)
## Simple feature collection with 6 features and 13 fields
## Geometry type: POINT
## Dimension:     XY
## Bounding box:  xmin: 182215.4 ymin: 3346961 xmax: 186005.4 ymax: 3349716
## Projected CRS: NAD83 / UTM zone 17N
##   OBJECTID    STATION_ID              STATION_NAME WATERBODY_ID
## 1        1 21FLFSI WAK-5                     WAK-5         1006
## 2        2 21FLFSI WAK-6                     WAK-6         1006
## 3        3 21FLFSI WAK-7                     WAK-7         1006
## 4        4 21FLFSI WAK-8                     WAK-8         1006
## 5        5 21FLGW  22848 NW1-LR-2034 WAKULLA RIVER         1006
## 6        6 21FLGW  34879             WAKULLA RIVER         1006
##                                                                         COMMENTS
## 1                                New station assigned to 1006, Run 61 - P.Homann
## 2                                New station assigned to 1006, Run 58 - R.Stuart
## 3                                New station assigned to 1006, Run 58 - R.Stuart
## 4                                New station assigned to 1006, Run 58 - R.Stuart
## 5                                                      Joe Hand Run 22 9/13/2005
## 6 J Hand March 2009; Lat/Longs updated based on values in WIN, Run 58 - R.Stuart
##   LATITUDE LONGITUDE RESULT_COUNT BEGIN_DATE END_DATE TMDL_RUN
## 1 30.23421 -84.29015           24       2019     2020   Run 61
## 2 30.23756 -84.29922           28       2019     2020   Run 58
## 3 30.23583 -84.30182           33       2019     2020   Run 58
## 4 30.23664 -84.30181           27       2019     2020   Run 58
## 5 30.22896 -84.28298           20       2004     2004     <NA>
## 6 30.21365 -84.26173         6591       2008     2022     <NA>
##   WATER_QUALITY_STATION BIOLOGY_STATION                 geometry
## 1                     1               0   POINT (183334 3349320)
## 2                     1               0 POINT (182471.4 3349716)
## 3                     1               0 POINT (182215.4 3349532)
## 4                     1               0   POINT (182219 3349622)
## 5                     1               1 POINT (184007.7 3348717)
## 6                     1               1 POINT (186005.4 3346961)

The next step is to create a polyline file that is similar to the source file, but includes an intersection with the WBID layer. It also includes creek ID (JEI), class, and creek length (total across WBIDs). It is specific to southwest Florida. This reproduces the tidalcreeks sf data object in tbeptools for the current wBID.

# create tidalcreeks polyline file with wbid, class, jei info -------------

# intersect creek lines with wbids
tidalcreeks <- st_intersection(tdlcrk, wbid) %>% 
  st_transform(4326) %>% 
  arrange(CreekID) %>% 
  mutate(
    id = 1:nrow(.)
  ) %>% 
  select(id, name = Name, JEI = CreekID, wbid = WBID, class = CLASS, Creek_Length_m = Total_m)

# fix rownames
row.names(tidalcreeks) <- 1:nrow(tidalcreeks)

head(tidalcreeks)
## Simple feature collection with 6 features and 6 fields
## Geometry type: GEOMETRY
## Dimension:     XY
## Bounding box:  xmin: -82.34154 ymin: 26.89042 xmax: -82.29655 ymax: 26.95527
## Geodetic CRS:  WGS 84
##   id         name  JEI  wbid class Creek_Length_m
## 1  1   Rock Creek CC01 1983B     2       6443.083
## 2  2   Rock Creek CC01  2052    3M       6443.083
## 3  3 Oyster Creek CC02 1983B     2      10175.167
## 4  4 Oyster Creek CC02  2067    3M      10175.167
## 5  5   Buck Creek CC03 1983B     2       2251.188
## 6  6   Buck Creek CC03  2068    3M       2251.188
##                         geometry
## 1 LINESTRING (-82.33869 26.92...
## 2 MULTILINESTRING ((-82.33006...
## 3 MULTILINESTRING ((-82.33188...
## 4 MULTILINESTRING ((-82.3194 ...
## 5 LINESTRING (-82.31512 26.89...
## 6 LINESTRING (-82.30026 26.89...

The final step is to extract the IWR station data at the state level to tidal creeks in southwest Florida. This is done by buffering the original creek line file (200m, flat ends), intersecting the buffered file with the station lat/lon file, and uisng an inner join by station. Finally, the WBID class is added. This is reproducing the iwrraw file from the tbeptools package.

# wbid classes from wbid, to join
classadd <- wbid %>% 
  select(wbid = WBID, class= CLASS) %>% 
  st_set_geometry(NULL) %>% 
  unique

# assigns stations to creek id basedon buffer, wbid already in dataset
# pull station data with the intersect, add class column
iwrraw <- st_buffer(tdlcrk, dist = 200, endCapStyle = 'FLAT') %>% 
  st_intersection(stas, .) %>% 
  select(sta = STATION_ID, wbid = WATERBODY_ID, JEI = CreekID) %>% 
  st_set_geometry(NULL) %>% 
  inner_join(., iwr, by = 'sta', relationship = 'many-to-many') %>% 
  mutate(
    newComment = rCode
  ) %>% 
  left_join(classadd, by = c('wbid'))

head(iwrraw)
##              sta  wbid  JEI year month day masterCode  result rCode newComment
## 1 21FLSWFD764483 1983B CC01 2009    12   1       COND 52000.0  <NA>       <NA>
## 2 21FLSWFD764483 1983B CC01 2009    12   1         DO     8.2  <NA>       <NA>
## 3 21FLSWFD764483 1983B CC01 2009    12   1      DOSAT   114.7     +          +
## 4 21FLSWFD764483 1983B CC01 2009    12   1      SALIN    34.3  <NA>       <NA>
## 5 21FLSWFD764483 1983B CC01 2009    12   1       COND 52200.0  <NA>       <NA>
## 6 21FLSWFD764483 1983B CC01 2009    12   1         DO     8.3  <NA>       <NA>
##   class
## 1     2
## 2     2
## 3     2
## 4     2
## 5     2
## 6     2

Finally, we want to compare the results from the previous year’s run with the new results to see how the scores have changed. We use functions from the tbeptools package to estimate creek scores, then compare in a matrix.

library(tbeptools)

# get new estimates
tmpnew <- anlz_tdlcrk(tidalcreeks, iwrraw, yr = 2023)

# get old estimates
tmpold <- anlz_tdlcrk(tidalcreeks, iwrraw, yr = 2022)

# compare
tmpnewcmp <- tmpnew %>% 
  select(wbid, JEI, class, scorenew = score)

tmpoldcmp <- tmpold %>% 
  select(wbid, JEI, class, scoreold = score)

levs <- c('No Data', 'Monitor', 'Caution', 'Investigate', 'Prioritize')
cmp <- full_join(tmpnewcmp, tmpoldcmp, by = c('wbid', 'JEI', 'class')) |> 
  mutate(
    scorenew = factor(scorenew, levels = levs),
    scoreold = factor(scoreold, levels = levs)
  )

table(cmp[, c('scorenew', 'scoreold')])
##              scoreold
## scorenew      No Data Monitor Caution Investigate Prioritize
##   No Data         400       5       0           1          0
##   Monitor           0     149       1           2          0
##   Caution           0       0      16           1          0
##   Investigate       0       0       2          14          0
##   Prioritize        0       3       0           1         22