knitr::opts_chunk$set(echo = TRUE, warning = F, message = F)

library(sf)
library(RODBC)
library(dplyr)
library(here)

This workflow was developed to update data used to estimate tidal creek assessment categories using FLDEP IWR run data. In this example, we use IWR Run 66, but in theory it should work with any IWR run. The only requirements are:

Below we set a path to the extracted location for the IWR database, load the tidal creek line file, and load the wbid polygon file.

# set database path
pth <- "~/Desktop/iwr2024_run66_2024-11-15/"

# # to explore
# con <- odbcConnectAccess2007('C:/Users/mbeck/Desktop/iwr2021_run61_2021-05-27/iwr_run61_05272021.accdb')
# sqlTables(con)
# sqlFetch(con, 'station list')

# source creek line file
tdlcrk <- st_read(here('shapes/TidalCreek_ALL_Line.shp'), quiet = T)

# wbid data, run 66 (url should not change between runs)
wbid <- st_read('https://ca.dep.state.fl.us/arcgis/rest/services/OpenData/WBIDS/MapServer/0/query?outFields=*&where=1%3D1&f=geojson', quiet = T) %>% 
  st_transform(crs = st_crs(tdlcrk))

Now we import the IWR run data for the entire state using an ODBC connection to the extracted folder. The following code just iterates through the .accdb files in the extracted folders, retrieves the data within a ten year window from the current run, and pulls out parameters of interest. Note that 11 years are subset based on the current year. This is done to accommodate IWR runs where incomplete data are present for the current year. This is done in a loop using a SQL request. It only takes a few minutes to run and does not use a lot of memory.

# this retrieves most recent ten years of iwr data, including the current year and ten years prior
# filters only parameters in mcode below
# used ODBC connect to access file
# entire state

# .accdb files to query
dbs <- list.files(pth, pattern = 'rawDataDB.*\\.accdb$', full.names = T)

# the current year of interest, used to build the query for ten prior years
curyr <- 2024

# query building tools
mcode <- c("CHLAC","COLOR","COND","DO","DOSAT","NO3O2","ORGN","SALIN","TKN","TN","TP","TSS","TURB") %>% 
  paste0("masterCode = '", ., "'") %>% 
  paste0(., collapse = ' or ')
qry_fun <- function(tab, curyr){
  
  out <- paste0("select sta, year, month, day, masterCode, result, rCode from ", tab, " where year <= ", curyr, 
               " and (", mcode, ")"
               )
  return(out)
  
}

# loop through the accdb files
iwr <- NULL
for(db in dbs){
  
  cat(basename(db), '\n')
  
  # setup the connection
  con <- odbcConnectAccess2007(db)
  
  # build the query
  qry <- basename(db) %>% 
    gsub('DB|\\.accdb', '', .) %>% 
    qry_fun(curyr)
  
  # retrieve the data
  res <- sqlQuery(con, qry)
  
  # add it to the output
  iwr <- rbind(iwr, res)
  
}
## rawDataDB1.accdb 
## rawDataDB2.accdb 
## rawDataDB3.accdb 
## rawDataDB4.accdb
head(iwr)
##                sta year month day masterCode    result rCode
## 1 112WRD  02231400 2021     9   1       COND 201.00000  <NA>
## 2 112WRD  02231400 2021     9   1         DO   5.30000  <NA>
## 3 112WRD  02231400 2021     9   1       ORGN   0.27500     U
## 4 112WRD  02231400 2021     9   1         TN   0.17425     +
## 5 112WRD  02234600 2015     8  24       COND 361.00000  <NA>
## 6 112WRD  02234600 2015     8  24         DO   6.00000  <NA>

Now we need to get station lat/lon data for intersection with the tidal creek line layer. This is for the entire state and is retrieved from an ODBC connection to the extracted folder.

# from geojson for run66
# https://geodata.dep.state.fl.us/datasets/FDEP::impaired-waters-rule-iwr-stations/about
staraw <- st_read('https://ca.dep.state.fl.us/arcgis/rest/services/OpenData/IMPAIRED_WATERS/MapServer/1/query?outFields=*&where=1%3D1&f=geojson', quiet = T)
stas <- staraw %>% 
  filter(STATION_ID %in% iwr$sta) %>% 
  st_transform(crs = st_crs(tdlcrk))

# pull from access, currently doesn't work
# stas <- list.files(pth, pattern = '^iwr\\_run', full.names = T) %>% 
#   odbcConnectAccess2007 %>% 
#   sqlFetch('station list') %>% 
#   filter(STA %in% unique(iwr$sta)) %>% 
#   st_as_sf(coords = c('LONG', 'LAT'), crs = 4326) %>% 
#   st_transform(crs = st_crs(tdlcrk))

head(stas)
## Simple feature collection with 6 features and 13 fields
## Geometry type: POINT
## Dimension:     XY
## Bounding box:  xmin: 406216.7 ymin: 2939554 xmax: 408028.2 ymax: 2941086
## Projected CRS: NAD83 / UTM zone 17N
##   OBJECTID     STATION_ID                     STATION_NAME WATERBODY_ID
## 1        1 1113S000120310 CAPE CORAL -1500FT FRM CANAL MOU       3240A1
## 2        2 1113S000120315 CAPE CORAL -1500FT FRM CANAL MOU        3240A
## 3        3 1113S000120320       CAPE CORAL -AT CANAL MOUTH       3240A1
## 4        4 1113S000120325 CAPE CORAL -4000FT FRM CANAL MOU       3240A1
## 5        5 1113S000120330 CAPE CORAL -2500FT FRM CANAL MOU       3240A1
## 6        6 1113S000120335 CAPE CORAL -3000FT FRM CANAL MOU       3240A1
##           COMMENTS LATITUDE LONGITUDE RESULT_COUNT BEGIN_DATE END_DATE TMDL_RUN
## 1 submitted by  PH  26.5875  -81.9319          150       1975     1975   Run 41
## 2 submitted by  PH  26.5847  -81.9236          197       1975     1975   Run 41
## 3 submitted by  PH  26.5847  -81.9278          208       1975     1975   Run 41
## 4 submitted by  PH  26.5736  -81.9417           95       1975     1975   Run 41
## 5 submitted by  PH  26.5764  -81.9417           93       1975     1975   Run 41
## 6 submitted by  PH  26.5806  -81.9403          115       1975     1975   Run 41
##   WATER_QUALITY_STATION BIOLOGY_STATION                 geometry
## 1                     1               0 POINT (407203.9 2941086)
## 2                     1               0 POINT (408028.2 2940770)
## 3                     1               0   POINT (407610 2940773)
## 4                     1               0 POINT (406216.7 2939554)
## 5                     1               0   POINT (406219 2939864)
## 6                     1               0 POINT (406361.8 2940328)

The next step is to create a polyline file that is similar to the source file, but includes an intersection with the WBID layer. It also includes creek ID (JEI), class, and creek length (total across WBIDs). It is specific to southwest Florida. This reproduces the tidalcreeks sf data object in tbeptools for the current wBIDs and must be saved to the data folder for the package.

# create tidalcreeks polyline file with wbid, class, jei info -------------

# intersect creek lines with wbids
tidalcreeks <- st_intersection(tdlcrk, wbid) %>% 
  st_transform(4326) %>% 
  arrange(CreekID) %>% 
  mutate(
    id = 1:nrow(.)
  ) %>% 
  select(id, name = Name, JEI = CreekID, wbid = WBID, class = CLASS, Creek_Length_m = Total_m)

# fix rownames
row.names(tidalcreeks) <- 1:nrow(tidalcreeks)

# save to Desktop for tbeptools data folder
save(tidalcreeks, file = '~/Desktop/tidalcreeks.RData', compress = 'xz')

head(tidalcreeks)
## Simple feature collection with 6 features and 6 fields
## Geometry type: GEOMETRY
## Dimension:     XY
## Bounding box:  xmin: -82.34154 ymin: 26.89042 xmax: -82.29655 ymax: 26.95527
## Geodetic CRS:  WGS 84
##   id         name  JEI  wbid class Creek_Length_m
## 1  1   Rock Creek CC01 1983B     2       6443.083
## 2  2   Rock Creek CC01  2052    3M       6443.083
## 3  3 Oyster Creek CC02 1983B     2      10175.167
## 4  4 Oyster Creek CC02  2067    3M      10175.167
## 5  5   Buck Creek CC03 1983B     2       2251.188
## 6  6   Buck Creek CC03 2068A    3M       2251.188
##                         geometry
## 1 LINESTRING (-82.33869 26.92...
## 2 MULTILINESTRING ((-82.33006...
## 3 MULTILINESTRING ((-82.33188...
## 4 MULTILINESTRING ((-82.3194 ...
## 5 LINESTRING (-82.31512 26.89...
## 6 LINESTRING (-82.30026 26.89...

The final step is to extract the IWR station data at the state level to tidal creeks in southwest Florida. This is done by buffering the original creek line file (200m, flat ends), intersecting the buffered file with the station lat/lon file, and using an inner join by station. Finally, the WBID class is added. This is reproducing the iwrraw file for tbeptools and must be saved in the data folder for the package.

# wbid classes from wbid, to join
classadd <- wbid %>% 
  select(wbid = WBID, class= CLASS) %>% 
  st_set_geometry(NULL) %>% 
  unique

# assigns stations to creek id basedon buffer, wbid already in dataset
# pull station data with the intersect, add class column
iwrraw <- st_buffer(tdlcrk, dist = 200, endCapStyle = 'FLAT') %>% 
  st_intersection(stas, .) %>% 
  select(sta = STATION_ID, wbid = WATERBODY_ID, JEI = CreekID) %>% 
  st_set_geometry(NULL) %>% 
  inner_join(., iwr, by = 'sta', relationship = 'many-to-many') %>% 
  mutate(
    newComment = rCode
  ) %>% 
  left_join(classadd, by = c('wbid'))

# save to Desktop for tbeptools data folder
save(iwrraw, file = '~/Desktop/iwrraw.RData', compress = 'xz')

head(iwrraw)
##                sta wbid  JEI year month day masterCode  result rCode newComment
## 1 21FLA   24010600 2052 CC01 1972    10   3      COLOR 15.0000  <NA>       <NA>
## 2 21FLA   24010600 2052 CC01 1972    10   3         DO  4.0000  <NA>       <NA>
## 3 21FLA   24010600 2052 CC01 1972    10   3      DOSAT 61.3873     $          $
## 4 21FLA   24010600 2052 CC01 1972    10   3      NO3O2  0.0400     +          +
## 5 21FLA   24010600 2052 CC01 1972    10   3       ORGN  0.2800  <NA>       <NA>
## 6 21FLA   24010600 2052 CC01 1972    10   3      SALIN 29.0000  <NA>       <NA>
##   class
## 1    3M
## 2    3M
## 3    3M
## 4    3M
## 5    3M
## 6    3M

Finally, we want to compare the results from the previous year’s run with the new results to see how the scores have changed. We use functions from the tbeptools package to estimate creek scores, then compare in a matrix.

library(tbeptools)

# get new estimates
tmpnew <- anlz_tdlcrk(tidalcreeks, iwrraw, yr = 2024)

# get old estimates
tmpold <- anlz_tdlcrk(tidalcreeks, iwrraw, yr = 2023)

# compare
tmpnewcmp <- tmpnew %>% 
  select(wbid, JEI, class, scorenew = score)

tmpoldcmp <- tmpold %>% 
  select(wbid, JEI, class, scoreold = score)

levs <- c('No Data', 'Monitor', 'Caution', 'Investigate', 'Prioritize')
cmp <- full_join(tmpnewcmp, tmpoldcmp, by = c('wbid', 'JEI', 'class')) |> 
  mutate(
    scorenew = factor(scorenew, levels = levs),
    scoreold = factor(scoreold, levels = levs)
  )

table(cmp[, c('scorenew', 'scoreold')])
##              scoreold
## scorenew      No Data Monitor Caution Investigate Prioritize
##   No Data         392       2       0           0          0
##   Monitor           1     163       0           1          2
##   Caution           0       1      16           0          0
##   Investigate       0       0       1          18          1
##   Prioritize        0       0       0           1         21