Extract period (seasonal) metrics from fitted GAM
Usage
anlz_metseason(
mod,
metfun = mean,
doystr = 1,
doyend = 364,
nsim = 10000,
yromit = NULL,
...
)
Arguments
- mod
input model object as returned by
anlz_gam
- metfun
function input for metric to calculate, e.g.,
mean
,var
,max
, etc- doystr
numeric indicating start Julian day for extracting averages
- doyend
numeric indicating ending Julian day for extracting averages
- nsim
numeric indicating number of random draws for simulating uncertainty
- yromit
optional numeric vector for years to omit from the output
- ...
additional arguments passed to
metfun
, e.g.,na.rm = TRUE
Details
This function estimates a metric of interest for a given seasonal period each year using results from a fitted GAM (i.e., from anlz_gam
). The estimates are based on the predicted values for each seasonal period, with uncertainty of the metric based on repeated sampling of the predictions following uncertainty in the model coefficients.
Examples
library(dplyr)
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')
anlz_metseason(mod, mean, doystr = 90, doyend = 180, nsim = 100)
#> # A tibble: 4 × 7
#> yr met se bt_lwr bt_upr bt_met dispersion
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2016 0.766 0.0767 4.72 9.42 6.67 0.0504
#> 2 2017 0.772 0.0810 4.70 9.76 6.77 0.0504
#> 3 2018 1.03 0.0731 8.76 16.9 12.2 0.0504
#> 4 2019 0.808 0.0536 5.77 9.36 7.34 0.0504